منابع مشابه
Controlling self-assembled perovskite-spinel nanostructures.
We report a discovery that self-assembled perovskite-spinel nanostructures can be controlled simply by selecting single-crystal substrates with different orientations. In a model BiFeO(3)-CoFe(2)O(4) system, a (001) substrate results in rectangular-shaped CoFe(2)O(4) nanopillars in a BiFeO(3) matrix; in contrast, a (111) substrate leads to triangular-shaped BiFeO(3) nanopillars in a CoFe(2)O(4)...
متن کاملControlling the function of DNA nanostructures with specific trigger sequences.
We report a hybridization-based switching mechanism with single-base specificity that can be readily integrated with functional DNA nanostructures. As an exemplar, we have developed a switchable DNAzyme (SDZ) that only becomes activated in the presence of a perfectly matched trigger sequence and operates effectively at room temperature.
متن کاملControlling the surface properties of nanostructures for studies of polymerases.
We report the successful functionalization of optically accessible nanostructures, suitable for single-molecule experiments at physiological substrate concentrations, with polyethylene glycol. Characterization of the coating in terms of roughness, protein repellence, and specific immobilization of DNA is described. We present an application of this technique in the detection of polymerase activ...
متن کاملControlling the spin polarization of nanostructures on magnetic substrates.
It is shown that, by utilizing spin-selective quantum interference, the spin polarization of nanostructures deposited on a magnetic substrate with a surface state can be strongly modulated locally and energetically by an appropriate structural design. This finding is deduced from state-of-the-art ab initio calculations and interpreted within an analytical model. We present results for hexagonal...
متن کاملProbing and controlling photothermal heat generation in plasmonic nanostructures.
In the emerging field of thermoplasmonics, Joule heating associated with optically resonant plasmonic structures is exploited to generate nanoscale thermal hotspots. In the present study, new methods for designing and thermally probing thermoplasmonic structures are reported. A general design rationale, based on Babinet's principle, is developed for understanding how the complementary version o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1994
ISSN: 0028-0836,1476-4687
DOI: 10.1038/368022a0